16,512 research outputs found

    Specific heat and energy for the three-dimensional O(2) model

    Get PDF
    We investigate the three-dimensional O(2) model on lattices of size 8^3 to 160^3 close to the critical point at zero magnetic field. We confirm explicitly the value of the critical coupling J_c found by Ballesteros et al. and estimate there the universal values of g_r and xi/L. At the critical point we study the finite size dependencies of the energy density epsilon and the specific heat C. We find that the nonsingular part of the specific heat C_{ns} is linearly dependent on 1/alpha. From the critical behaviour of the specific heat for T not T_c on the largest lattices we determine the universal amplitude ratio A+/A-. The alpha- dependence of this ratio is close to the phenomenological relation A+/A- = 1-4alpha.Comment: Lattice2001(spin), 3 pages, 4 figure

    The chiral transition of N_f=2 QCD with fundamental and adjoint fermions

    Full text link
    We study QCD with two staggered Dirac fermions both in the fundamental (QCD) and the adjoint representation (aQCD) near the chiral transition. The aim is to find the universality class of the chiral transition and to verify Goldstone effects below the transition. We investigate aQCD, because in that theory the deconfinement and the chiral transitions occur at different temperatures T_d<T_c. Here, we show that the scaling behaviour of the chiral condensate in the vicinity of \beta_c is in full agreeement with that of the 3d O(2) universality class. In the region T_d<T<T_c we confirm the quark mass dependence of the chiral condensate which is expected due to the existence of Goldstone modes like in 3d O(N) spin models. For fundamental QCD we use the p4-action. Here, we find Goldstone effects below T_c like in aQCD and the 3d O(N) spin models, however no O(2)/O(4) scaling near the chiral transition point. The result for QCD may be a consequence of the coincidence of the deconfinement transition with the chiral transition.Comment: 6 pages, 5 figures, poster contribution to Lattice 2005 (Nonzero temperature and density), one reference added, figure 2 change

    Optomechanics with molecules in a strongly pumped ring cavity

    Full text link
    Cavity cooling of an atom works best on a cyclic optical transition in the strong coupling regime near resonance, where small cavity photon numbers suffice for trapping and cooling. Due to the absence of closed transitions a straightforward application to molecules fails: optical pumping can lead the particle into uncoupled states. An alternative operation in the far off-resonant regime generates only very slow cooling due to the reduced field-molecule coupling. We predict to overcome this by using a strongly driven ring-cavity operated in the sideband cooling regime. As in the optomechanical setups one takes advantage of a collectively enhanced field-molecule coupling strength using a large photon number. A linearized analytical treatment confirmed by full numerical quantum simulations predicts fast cooling despite the off-resonant small single molecule - single photon coupling. Even ground state cooling can be obtained by tuning the cavity field close to the Anti-stokes sideband for sufficiently high trapping frequency. Numerical simulations show quantum jumps of the molecules between the lowest two trapping levels, which can be be directly and continuously monitored via scattered light intensity detection

    Ionization by bulk heating of electrons in capacitive radio frequency atmospheric pressure microplasmas

    Full text link
    Electron heating and ionization dynamics in capacitively coupled radio frequency (RF) atmospheric pressure microplasmas operated in helium are investigated by Particle in Cell simulations and semi-analytical modeling. A strong heating of electrons and ionization in the plasma bulk due to high bulk electric fields are observed at distinct times within the RF period. Based on the model the electric field is identified to be a drift field caused by a low electrical conductivity due to the high electron-neutral collision frequency at atmospheric pressure. Thus, the ionization is mainly caused by ohmic heating in this "Omega-mode". The phase of strongest bulk electric field and ionization is affected by the driving voltage amplitude. At high amplitudes, the plasma density is high, so that the sheath impedance is comparable to the bulk resistance. Thus, voltage and current are about 45{\deg} out of phase and maximum ionization is observed during sheath expansion with local maxima at the sheath edges. At low driving voltages, the plasma density is low and the discharge becomes more resistive resulting in a smaller phase shift of about 4{\deg}. Thus, maximum ionization occurs later within the RF period with a maximum in the discharge center. Significant analogies to electronegative low pressure macroscopic discharges operated in the Drift-Ambipolar mode are found, where similar mechanisms induced by a high electronegativity instead of a high collision frequency have been identified
    corecore